Soil-pipeline interaction on slopes under earthquake loading

Exchange-Risk Workshop
Resilience of natural gas pipeline networks to natural hazards
Bristol, 1 September 2016

Amir M. Kaynia
Discipline Lead, Vibration and Earthquake Engineering, NGI
Adjunct Professor, Norwegian University of Science and Technology, NTNU
OUTLINE

- Background
- Developed computational model
- Special features
- Application
- Representative results
- Developed model vs typical models used in practice
- Typical results
- Effect of special features of developed model
- Conclusions
Background
Background

- Extensive research has been carried out on response of pipelines on soft seabed (e.g. SAFEBUCK JIP). The research has focused on, among others, buckling and pipeline walking.
Background

- Extensive research has been carried out on response of pipelines on soft seabed (e.g. SAFEBUCK JIP). The research has focused on, among others, buckling and pipeline walking.
Background

- Extensive research has been carried out on response of pipelines on soft seabed (e.g. SAFEBUCK JIP). The research has focused on, among others, buckling and pipeline walking.
- Research is still lagging behind on earthquake response.
- The earthquake response has primarily dealt with response of onshore buried pipelines to permanent ground motions, faults and wave propagation.
Background

- Extensive research has been carried out on response of pipelines on soft seabed (e.g. SAFEBUCK JIP). The research has focused on, among others, buckling and pipeline walking.
- Research is still lagging behind on earthquake response.
- The earthquake response has primarily dealt with response of onshore buried pipelines to permanent ground motions, faults and wave propagation.
Pipelines on slopes

- Considering soft soil conditions of most offshore pipelines, earthquake forces due to soil strains are often small compared to onshore buried pipelines.
Considering soft soil conditions of most offshore pipelines, earthquake forces due to soil strains are often small compared to onshore buried pipelines.

However, offshore pipelines are vulnerable to permanent ground motions caused by earthquakes.

Common cases are pipelines traversing submarine slopes which tend to experience large downslope displacements due to earthquakes.
Pipelines on slopes

- Considering soft soil conditions of most offshore pipelines, earthquake forces due to soil strains are often small compared to onshore buried pipelines.

- However, offshore pipelines are vulnerable to permanent ground motions caused by earthquakes.

- Common cases are pipelines traversing submarine slopes which tend to experience large downslope displacements due to earthquakes.
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:

- Inertial loads in pipeline due to pipe mass (as opposed to static conditions, dynamic loads are large).
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:

- Inertial loads in pipeline due to pipe mass (as opposed to static conditions, dynamic loads are large).

- Asynchronous ground accelerations due to long extension of pipeline and topographic features.
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:

- Inertial loads in pipeline due to pipe mass (as opposed to static conditions, dynamic loads are large).

- Asynchronous ground accelerations due to long extension of pipeline and topographic features.
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:

- Inertial loads in pipeline due to pipe mass (as opposed to static conditions, dynamic loads are large).

- Asynchronous ground accelerations due to long extension of pipeline and topographic features.

- Strain-softening behavior at soil-pipeline interface.
Pipelines on slopes

Numerical model for 3-D earthquake response of pipeline on slopes. Relevant issues are:

- Inertial loads in pipeline due to pipe mass (as opposed to static conditions, dynamic loads are large).
- Asynchronous ground accelerations due to long extension of pipeline and topographic features.
- Strain-softening behavior at soil-pipeline interface.
Pipelines on slopes
Pipe-soil interaction analysis is divided into two steps:
Pipe-soil interaction analysis is divided into two steps:

1) computation of earthquake accelerations on slope - for this step, one could use available 2D/3D FE/FD codes
Pipelines on slopes

Pipe-soil interaction analysis is divided into two steps:

1) computation of earthquake accelerations on slope - for this step, one could use available 2D/3D FE/FD codes
Pipe-soil interaction analysis is divided into two steps:

1) computation of earthquake accelerations on slope - for this step, one could use available 2D/3D FE/FD codes

2) response of pipeline to seabed accelerations. For this step, we have developed _QUIVER_pipe_ (Kaynia, 2012)
Pipe-soil interaction analysis is divided into two steps:

1) computation of earthquake accelerations on slope - for this step, one could use available 2D/3D FE/FD codes

2) response of pipeline to seabed accelerations. For this step, we have developed QUIVER_pipe (Kaynia, 2012)
Pipelines on slopes – Case study
Pipelines on slopes – Case study

Region of large displacement

Edge of escarpment

19 points (every 40 m)

20 points (every 25 m)

10 points (every 50 m)

6 points (every 100 m)
Pipelines on slopes – Case study
Pipelines on slopes – Case study

Results of 2-D FEM analyses of slope
Pipelines on slopes – Case study

Results of 2-D FEM analyses of slope

(a) Horizontal displacements
Pipelines on slopes – Case study

Results of 2-D FEM analyses of slope

(a) Horizontal displacements

(b) Vertical displacements
Pipelines on slopes – Case study

Results of 2-D FEM analyses of slope

(a) Horizontal displacements

(b) Vertical displacements

(c) Shear strains
Pipelines on slopes – Case study

- Typical results – acceleration time histories at several points: large variations along slope
Pipelines on slopes – Case study

- Typical results – acceleration time histories at several points: large variations along slope
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.

- Time histories of displacements of pipeline relative to soil at selected points on seabed
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.

- Time histories of displacements of pipeline relative to soil at selected points on seabed
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.

- Time histories of displacements of pipeline relative to soil at selected points on seabed

- Time histories of axial force in pipeline at selected points on seabed (note both tension and compression).
Pipelines on slopes – Case study

- Pipe-soil interaction spring in axial direction established based on model tests in laboratory.

- Time histories of displacements of pipeline relative to soil at selected points on seabed

- Time histories of axial force in pipeline at selected points on seabed (note both tension and compression).
Pipelines on slopes – Case study

Maximum axial forces and bending moments in pipeline
Pipelines on slopes – Case study

Maximum axial forces and bending moments in pipeline
Pseudo-Static Approach

- In practice, pipelines are often analyzed by pseudo-static method.

- In this method, the concurrent displacements on the slope are applied statically to the pipe-soil model, and the inertial forces in the pipeline are ignored.
- In practice, pipelines are often analyzed by pseudo-static method.

- In this method, the concurrent displacements on the slope are applied statically to the pipe-soil model, and the inertial forces in the pipeline are ignored.
In practice, pipelines are often analyzed by pseudo-static method.

In this method, the concurrent displacements on the slope are applied statically to the pipe-soil model, and the inertial forces in the pipeline are ignored.

Disadvantages: 1) need for analyses at many time steps, 2) excluding inertial force in pipe is not conservative.
Pipelines on slopes – Case study

Computed axial forces along pipeline by conventional pseudo-static method at two selected time steps – not realistic!
Pipelines on slopes – Case study

Computed axial forces along pipeline by conventional pseudo-static method at two selected time steps – not realistic!
Effect of Strain Softening
Effect of Strain Softening

- Most existing models use soil springs with perfectly plastic response after yield (no strain softening).
Effect of Strain Softening

- Most existing models use soil springs with perfectly plastic response after yield (no strain softening).
Effect of Strain Softening

- Most existing models use soil springs with perfectly plastic response after yield (no strain softening).

- Comparison of computed forces with and without strain softening springs.
Effect of Strain Softening

- Most existing models use soil springs with perfectly plastic response after yield (no strain softening).

- Comparison of computed forces with and without strain softening springs.
Effect of Strain Softening

- Most existing models use soil springs with perfectly plastic response after yield (no strain softening).

- Comparison of computed forces with and without strain softening springs.

- Strain softening helps reduce forces in pipeline; positive feature in design.
Summary & Conclusions
Summary & Conclusions

• Results of a real case study using Computational Model (QUIVER_pipe) were presented and special features of computed responses discussed.
Summary & Conclusions

• Results of a real case study using Computational Model (QUIVER_pipe) were presented and special features of computed responses discussed.

• Largest forces often occur at places on the slope which experience largest displacement gradients.
Summary & Conclusions

• Results of a real case study using Computational Model (QUIVER_pipe) were presented and special features of computed responses discussed.

• Largest forces often occur at places on the slope which experience largest displacement gradients.

• Consideration of strain softening behavior of soil springs often reduces earthquake-induced forces in pipelines.
Summary & Conclusions

• Results of a real case study using Computational Model (QUIVER_pipe) were presented and special features of computed responses discussed.

• Largest forces often occur at places on the slope which experience largest displacement gradients.

• Consideration of strain softening behavior of soil springs often reduces earthquake-induced forces in pipelines.

• Common analysis methods based on pseudo-static method are not conservative.
Thank you for your attention